یک شبکه عصبی تکاملی ترکیبی برای تحلیل و پیش‌بینی روند بازار سهام با استفاده از فیلتر کلمن ناپایدار

یک شبکه عصبی تکاملی ترکیبی برای تحلیل و پیش‌بینی روند بازار سهام با استفاده از فیلتر کلمن ناپایدار

A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter

سال نشر:

20144

نویسندگان:

Ranjeeta Bisoi, P.K. Dash

تعداد صفحه فارسی/انگلیسی:

16

کلمات کلیدی:

IIR filter, NN UKF, DE Stock indices, Trend prediction

دانشگاه

Multidisciplinary Research Cell, Siksha O Anusandhan University, Bhubaneswar, Odisha, India

نشریه

Applied Soft Computing

چکیده مقاله

ABSTRACT

Stock market prediction is of great interest to stock traders and investors due to high profit in trading the stocks. A successful stock buying/selling generally occurs near price trend turning point. Thus the prediction of stock market indices and its analysis are important to ascertain whether the next day’s closing price would increase or decrease. This paper, therefore, presents a simple IIR filter based dynamic neural network (DNN) and an innovative optimized adaptive unscented Kalman filter for forecasting stock price indices of four different Indian stocks, namely the Bombay stock exchange (BSE), the IBM stock market RIL stock market, and Oracle stock market. The weights of the dynamic neural information system area djusted by four different learning strategies that include gradient calculation, unscented Kalman filter (UKF), differential evolution (DE), and a hybrid technique (DEUKF) by alternately executing the DE and UKF for a few generations. To improve the performance of both the UKF and DE algorithms, adaptation of certain parameters in both these algorithms has been presented in this paper. After predicting the stock price indices one day to one week ahead time horizon, the stock market trend has been analyzed usingseveral important technical indicators like the moving average (MA), stochastic oscillators like K and D parameters, WMS %R (William indicator), etc. Extensive computer simulations are carried out with the four learning strategies for prediction of stock indices and the up or down trends of the indices From the results it is observed that significant accuracy is achieved using the hybrid DEUKF algorithm in comparison to others that include only DE, UKF, and gradient descent technique in chronological order  Comparison swith some of the widely used neural networks (NNs) are also presented in the paper.

دانلود مقاله

دریافت لینک دانلود برای دریافت فایل مدنظر نام و ایمیل خود را در فرم زیر وارد کنید تا لینک دانلود برای شما ارسال شود  حتما آدرس ایمیل خود را به صورت صحیح وارد کنید .

مقاله های مرتبط

No Post found